您现在的位置是: 首页 > 车型大全 车型大全

aria math_aria math简谱_1

ysladmin 2024-07-28 人已围观

简介aria math_aria math简谱       接下来,我将会为大家提供一些有关aria math的知识和见解,希望我的回答能够让大家对此有更深入的了解。下面,我们开始探讨一下aria math的话题。1.高

aria math_aria math简谱

       接下来,我将会为大家提供一些有关aria math的知识和见解,希望我的回答能够让大家对此有更深入的了解。下面,我们开始探讨一下aria math的话题。

1.高分求[国际服装发展现状和品牌服装营销]方面的外文文献

2.求英语高手翻译(追100,大哥大姐帮帮)

3.有谁知道中国12科蝴蝶种类全部名单,近1300种

4.马尔代夫

5.中国下寒武统梅树村阶 ()

aria math_aria math简谱

高分求[国际服装发展现状和品牌服装营销]方面的外文文献

       这是一片写的不错的

       Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforc

       Vistasp M. Karbharia, Corresponding Author Contact Information, E-mail The Corresponding Author and Howard Strasslerb

       aMaterials Science & Engineering Program, and Department of Structural Engineering, MC-0085, University of California San Diego, Room 105, Building 409, University Center, La Jolla, CA 92093-0085, USA.

       bDepartment of Restorative Dentistry, Dental School, University of Maryland, Baltimore, MD, USA

       Received 10 December 2005; revised 25 June 2006; accepted 31 August 2006. Available online 7 November 2006.

       Abstract

       Objective

       The aim of this study was to compare and elucidate the differences in damage mechanisms and response of fiber-reinforced dental resin composites based on three different brandsnext term under flexural loading. The types of reinforcement consisted of a unidirectional E-glass prepreg (Splint-It from Jeneric/Petron Inc.), an ultrahigh molecular weight polyethylene fiber based biaxial braid (Connect, Kerr) and an ultrahigh molecular weight polyethylene fiber based leno-weave (Ribbond).

       Methods

       Three different commercially available fiber reinforcing systems were used to fabricate rectangular bars, with the fiber reinforcement close to the tensile face, which were tested in flexure with an emphasis on studying damage mechanisms and response. Eight specimens (n = 8) of each type were tested. Overall energy capacity as well as flexural strength and modulus were determined and results compared in light of the different abilities of the architectures used.

       Results

       Under flexural loading unreinforced and unidirectional prepreg reinforced dental composites failed in a brittle previous termfashion,next term whereas the braid and leno-weave reinforced materials underwent significant deformation without rupture. The braid reinforced specimens showed the highest peak load. The addition of the unidirectional to the matrix resulted in an average strain of 0.06 mm/mm which is 50% greater than the capacity of the unreinforced matrix, whereas the addition of the braid and leno-weave resulted in increases of 119 and 126%, respectively, emphasizing the higher capacity of both the UHM polyethylene fibers and the architectures to hold together without rupture under flexural loading. The addition of the fiber reinforcement substantially increases the level of strain energy in the specimens with the maximum being attained in the braid reinforced specimens with a 433% increase in energy absorption capability above the unreinforced case. The minimum scatter and highest consistency in response is seen in the leno-weave reinforced specimens due to the details of the architecture which restrict fabric shearing and movement during placement.

       Significance

       It is crucial that the appropriate selection of fiber architectures be made not just from a perspective of highest strength, but overall damage tolerance and energy absorption. Differences in weaves and architectures can result in substantially different performance and appropriate selection can mitigate premature and catastrophic failure. The study provides details of materials level response characteristics which are useful in selection of the fiber reinforcement based on specifics of application.

       Keywords: Fiber reinforcement; Dental composite; Flexure; Damage tolerance; Architecture; Unidirectional; Braid; Leno-weave

       Article Outline

       1. Introduction

       2. Materials and methods

       3. Results

       4. Discussion

       5. Summary

       References

       1. Introduction

       A range of fillers in particulate form have conventionally been used to improve performance characteristics, such as strength, toughness and wear resistance, Although the addition of fillers and recent changes in composition of resin composites have been noted to provide enhanced wear resistance [1] and [2], conventional filler based systems are still brittle as compared to metals. Sakaguchi et al. [3] reported that these were prone to early fracture with crack propagation rates in excess of those seen in porcelain. This is of concern since clinical observations have demonstrated that under forces generated during mastication the inner faces of restorations can be subject to high tensile stresses which cause premature fracture initiation and failure [4]. In recent years, fiber reinforcements in the form of ribbons have been introduced to address these deficiencies [5]. By etching and bonding to tooth structure with composite resins embedded with woven fibers adapted to the contours of teeth periodontal splints, endodontic posts, anterior and posterior fixed partial dentures, orthodontic retainers and reinforcement of single tooth restorations can be accomplished. While the science of fiber-reinforced polymer composites is well established, the application of these materials in dental applications is still new and aspects related to material characterization, cure kinetics and even placement of reinforcement are still not widely understood.

       Due to the nature of filled polymer and ceramic systems that have been used conventionally, most material level tests designed and used extensively, for the characterization of dental materials, emphasize the brittle nature of materials response. In many cases the tests and the interpretation of results, are not suited to the class of fiber-reinforced polymeric composites, wherein aspects, such as fiber orientation, placement of fabric and even scale effects are extremely important. The difference in characteristics and the need to develop a fundamental understanding of response of continuous fiber and fabric, reinforced dental composites has recently been emphasized both through laboratory and clinical studies. Recent studies have addressed critical aspects, such as effects of fabric layer thickness ratios and configurations [6], fiber position and orientation [7] and even test specimen size [8]. However, the selection and use of continuous reinforcement is largely on an ad hoc basis, with diverse claims being made by manufacturers, without a thorough understanding of the materials based performance demands for the material by the specifics of an application (for example, the fabric architecture required for optimized performance of a post are very different from those for a bridge) or details of response characteristics at levels beyond those of mere “strength” and “modulus”. Further, each fabric is known to respond in different manner to manipulation and drape (i.e. conformance) to changes in substrate configuration [9]. The architecture of the fabrics permits movement of fibers or constraint thereof and even shearing of the structure, to different extents. Weave patterns have also been noted to be important in the selection of composite materials for dental applications based on the specifics of application [10]. Thus, clinically, when each of the different fabric configurations is used to reinforce dental composites, there are manipulation changes that occur to some of the fabric materials. For the biaxially braided material, the fiber orientation can change after cutting and embedment in the composite when adapting to tooth contours. The fibers in the ribbon spread out and separate from each other and become more oriented in a direction transverse to the longitudinal axis of the ribbon. When the leno-weave is cut and embedded in dental composites, the fiber yarns maintain their orientation and do not separate from each other when closely adapted to the contours of teeth. However, due to the orthogonal structure gaps can appear within the architecture providing local areas unreinforced with fiber reinforcement. The unidirectional glass fiber material does not closely adapt to the contours of teeth due to the rigidity of the fibers. It is difficult to manipulate the fibrous material which leaves the final composite material thicker; further manipulation causes glass fiber separation with some visible fractures of the fibers themselves.

       The aim of this study is to experimentally assess the flexural response of three commercial fiber/fabric reinforcement systems available for dental use and to compare performance based on different characteristics and to elucidate differences based on details of fabric architecture and fiber type.

       2. Materials and methods

       Three different fabric-reinforcing products, all in ribbon form, were used in this investigation. The first is a 3 mm wide unidirectional E-glass prepreg structure with no transverse reinforcement (Splint-It, Jeneric/Petron Inc.1) designated as set A, whereas the other two are formed of ultra-high molecular weight polyethylene fibers in the form of a 4 mm wide biaxial braid (Connect, Kerr), designated as set B and a 3 mm wide Leno-weave (Ribbond, WA), designated as set C. The first is a pure unidirectional which intrinsically gives the highest efficiency of reinforcement in the longitudinal direction with resin dominated response in the transverse direction. The second is a biaxial braid without axial fibers, which provides very good conformability and structure through the two sets of yarns forming a symmetrical array with the yarns oriented at a fixed angle from the braid axis. The third architecture has warp yarns crossed pair wise in a figure of eight pattern as filling yarns providing an open weave effect for controlled yarn slippage and good stability.

       Multiple specimens of the fabrics were carefully measured and weighed and the average basis weight of the biaxial braid was determined to be 1.03 × 10?4 g/mm2 whereas that for the leno-weave was 1.42 × 10?4 g/mm2. It was noted that the unidirectional had an aerial weight of 2.2 times that of the other two. Rectangular test bars of size 2 mm × 2 mm × 48 mm were constructed from layered placement of a flowable composite resin (Virtuoso FloRestore, Demat) in polysiloxane molds, with glass slides held on top with rubber bands and light cured for 60 s using a Kulzer UniXS laboratory polymerization lamp. In the case of sets B and C the fabric was first wetted and then placed on the first layer of the flowable composite resin such that the fiber reinforcement was placed between 0.25 and 0.5 mm from the bottom surface (which would be used as the tensile surface in flexural testing). The addition of higher modulus material at or near the tensile surface is known from elementary mechanics of materials to increase flexural performance and has been verified for dental composite materials by Ellakwa et al. [11] and [12]. Care was taken to maintain alignment of the fibers and fabric structure and not cause wrinkling or lateral movement which would affect overall performance characteristics. The fabric reinforced specimens had only a single layer of reinforcement near the bottom surface with the rest of the specimen having no fiber reinforcement. This general configuration for flexural specimens has been used previously by Kanie et al. [13]. In the current investigation, fiber weight fraction in the single layer was between 37 and 42% but is significantly lower if determined on the basis of the full thickness of the overall specimen. Unreinforced bars of the resin were also fabricated the same way for comparison and were designated as set D.

       Eight specimens (n = 8) from each set were tested in three-point flexure using a span of 16 mm which provides a span to depth (l/d) ratio of 16, which is recommended by ASTM D 790-03 [14]. It is noted that flexural characteristics can be substantially affected by choice of the l/d ratio which intrinsically sets the balance between shear and bending moment, with shear dominating on shorter spans. Load was introduced through a rounded crosshead indenter placed in two positions—parallel to the test specimen span (P1) and perpendicular to the test specimen span (P2). The load head indenter was of 4 mm total length. This was done to assess effects of load introduction since ribbon architecture had fibers at different orientations. Tests were conducted at a displacement rate of 1 mm/min and a minimum of eight tests were conducted for each set. Loading was continued till either the specimen showed catastrophic rupture or the specimen attained a negative slope of load versus displacement with the load drop continuing slowly past peak to below 85% of the peak load. This level was chosen to exceed the 0.05 mm/mm strain limitation of apparent failure recommended by ASTM D790-03 [14] so as to enable an assessment of ductility of the specimens. Specimens were carefully examined for cracking, crazing and other damage.

       The flexure strength was determined as

       Click to view the MathML source (1)

       where P is the applied load (or peak load if rupture did not occur), L the span length between supports and b and d are the width and thickness of the specimens, respectively.

       While the tangent modulus of elasticity is often used to determine the modulus of specimens, by drawing a tangent to the steepest initial straight-line portion of the load-deflection curve to measure the slope, m, which is then used as

       Click to view the MathML source (2)

       in the current case a majority of the specimens show significant changes in slopes very early in the response curve indicating microcracking and non-linearity. Since these occur fairly early the modulus determined from the initial tangent has significant statistical variation. In order to determine a more consistent measure of modulus the secant modulus of elasticity as defined in ASTM D790-03 [14] is used herein, with the secant being drawn between the origin and the point of maximum load to determine the slope m, which is then used in Eq. (2). This also has the advantage of providing a characteristic that incorporates the deformation capability, thereby differentiating between specimens that reach a maximum load at low deformation (such as, the unreinforced composite and the unidirectional reinforced composite) and those that show significant deformation prior to attainment of peak load (such as, the specimens reinforced with the braid and leno-weave).

       The matrix material is generically more brittle than the fiber and usually has a lower ultimate strain. Thus, as the specimen bends the matrix is likely to develop a series of cracks with the initiation and propagation of cracks depending not just on the type and positioning of the reinforcement, but also on the strain capacity of the neat resin areas. It is thus of use to compute the strain in the composite under flexural load and this can be determined as

       Click to view the MathML source (3)

       where D is the midspan displacement.

       The toughness of a material can be related to both its ductility and its ultimate strength. This is an important performance characteristic and is often represented in terms of strain energy, U, which represents the work done to cause a deformation. This is essentially the area under the load-deformation curve and can be calculated as

       Click to view the MathML source (4)

       where P is the applied load and x is the deformation. In the case of the present investigation, two levels of strain energy are calculated to enable an assessment of the two response types. In the first, strain energy is computed to the deformation level corresponding to peak load (which is also the fracture load for sets A and D). In the case of specimens that show significant inelastic deformation (sets B and C) strain energy is also computed till a point corresponding to a deformation of 11.5 mm at which point the load shows a 15% drop from the peak. Post-peak response in flexural has earlier been reported by Alander et al. [8].

       3. Results

       The application of flexural loading was seen to result in two different macroscopic forms of response. In the case of specimens from sets A and D (reinforced with a unidirectional fabric and unreinforced) failure was catastrophic, in brittle fashion, at peak load, whereas in the case of specimens from sets B and C the attainment of peak load was followed by a very slow decrease in load with increasing displacement, representative of inelastic or plastic, deformation. Typical response curves are shown in Fig. 1 as an example.

       Display Full Size version of this image (24K)

       Fig. 1. Typical flexural response.

       The variation in flexural strength (plotted here in terms of stress at peak load) with type of specimen and load introduction method is shown in Fig. 2. The highest strength was achieved by specimens with the braided fabric wherein on average a 125% increase over the unreinforced specimens was attained. Statistical analysis with ANOVA and Tukey's post hoc test revealed that method of load introduction did not affect the results and that further there were no significant differences in overall peak strength results between sets A and B (specimens containing the unidirectional and braided fabrics). Significant differences (p < 0.003) were noted between sets B and C. It is, however, noted that in sets B and C, failure did not occur at the peak load, with load slowly decreasing with increase in midpoint deflection. A comparison of flexural stresses for these systems at peak load and load corresponding to a deflection of 11.5 mm is shown in Fig. 3. As can be seen the two systems show significant inelastic deformation with drops of only 12.8, 12.1, 11.7 and 9.5% from the peak, emphasizing the stable, ductile and non-catastrophic, post-peak response in these systems.

       Display Full Size version of this image (28K)

       Fig. 2. Flexural strength at peak load.

       Display Full Size version of this image (50K)

       Fig. 3. Comparison of flexural stresses in specimens having non-catastrophic failure modes.

       A comparison of secant modulus (measured to the peak load) for the different sets is shown in Fig. 4. As can be seen, with the exception of the unidirectional system, the apparent moduli were lower than that of the unreinforced specimens. It is also noted that although the Tukey post hoc tests do not show a significant difference due to orientation of load indenter, the level for the unidirectionals is only 0.1022 compared to 1 for the others. Removal of a single outlier from P1 results in p < 0.007 indicating a strong effect of orientation of the indenter with the secant modulus being 17.7% lower with the indenter placed parallel to the fibers, which results in splitting between fibers and uneven fracture with less pullout.

       Display Full Size version of this image (25K)

       Fig. 4. Comparison of secant moduli under flexural loading.

       As was noted previously, both the unreinforced samples (set D) and the unidirectional prepreg reinforced specimens (set A) failed in catastrophic fashion at deformation levels significantly less than those at which the other two sets reached the inelastic peak. Since sets B and C did not fracture but showed large deformation with some partial depth cracking through the matrix it is important to be able to compare the levels of strain attained on the tension face using Eq. (3). This comparison is shown in Fig. 5 at the level of peak load (which is the fracture/failure load for sets A and D). While the addition of the unidirectional to the matrix resulted in an average strain of 0.06 mm/mm which is 50% greater than the capacity of the unreinforced matrix, the addition of the braid and leno-weave resulted in increases of 119 and 126%, respectively, emphasizing the higher capacity of both the UHMW polyethylene fibers and the architectures to hold together without rupture under flexural loading. It should be noted, as a reference, that the strain at the point at which the tests on sets B and C were stopped, at a midpoint deflection of 11.5 mm, was 0.135 mm/mm, which represents a 233% increase over the level attained by the unreinforced matrix. The us

求英语高手翻译(追100,大哥大姐帮帮)

       这个问题看上去似乎很简单,人人都会。其实并不然,也有说的不是很理想的。主要的现象有几下几点:

       1、 不知从何说起。有很多同学当听到老师问:“Can you make a self-introduction?”时,首先迟疑几秒,然后怔怔的看着:“老师说什么呀?”这一类算是“无准备型”。自我介绍是你与人打交道,参加各类口语考试,职场面试不可或缺的一部分,同时也是非常重要的一部分。作为口语测试,测试的老师其实重点考查的是你运用语言的能力,而不是对你的背景的了解。所以想把口语学好的同学不妨大胆的秀一下。

       2、缺乏逻辑性。还有一些同学在作自我介绍时,要么只说两句话名字,年龄;要么夸夸其谈但缺乏逻辑性。别看简简单单的一个自我介绍有时也能反映出一个人的逻辑思维和做事态度。

       3、缺乏幽默感。幽默的开场除了可以营造出活泼和睦的气氛外,还能给对方留下深刻的第一印象,即使对象是以建立了朋友关系或同事关系的外国人,在酒会或聚餐等各式场合,同样可以用诙谐的方式来表现自我,使你和他们之间的关系达到更圆满的程度。

       初学英语的各位人士,可以学着用一下;对于自认为用英语作自我介绍已经易如反掌的英语高手,不妨在平时也试试使自我介绍增添一些新意:)

       1、 以星座为话题作自我介绍

       I’m an Aries. Arians are supposed to be courageous leaders but troublesome followers. Half true. I’m definitely a troublesome. follower. (我是牧羊座的。牧羊座的人据说是很有胆识的***物,但同时也是很会惹麻烦的部属。说对了一半,我的确是个麻烦的部属。)

       I’m a Leo. Some good Leo traits are: broad-minded, loving, faithful. Bad traits are: bossy, patronizing. I’m a typical Leo. I’m faithful but patronizing. 6park.com

       (我属狮子座。狮子座的优点是心胸宽阔、有爱心,以及忠诚;缺点则是专横、自以为是。我就是典型的狮子座,忠诚却又自负。)

       2、I’m a person of principle. I do NOT compromise. Because I don’t smoke , I do NOT wear a T-shirt with a Marlboro logo, even if somebody gives one to me free.

       我是个有原则的人,绝对不会妥协。因为我不抽烟,所以我也不会穿印有万宝路字样的T恤,即使有人免费送给我。

       I’m a great salesman. I could sell a knockoff Windows 2000 to Bill Gates.

       我是一个很棒的推销员,我能把盗版的Windows 2000卖给比尔*盖茨。

       3、I love shopping! My mom(friends) says, I should become a legislator ‘cause I bring so many bills into the house.

       我酷爱买东西!所以我妈(朋友)说我应该当国会议员的。因为,我把那么多的bill(账单/请愿书/法案)带进了the house(家里/议院)。

       以上一些简单自我介绍只是个参考,希望想学英语的同学或是想把英语说得更漂亮的人士能够举一反三做出更具魅力符合自己个性的自我介绍。

参考资料

       新浪:/bschool/2016-09-12/doc-ifxvukhv7934570.shtml

有谁知道中国12科蝴蝶种类全部名单,近1300种

       来自无线电台的消息,希望引起高度重视。我是罗伯特,我是米歇尔。今天对维基尼亚来说是一个恐怖的日子,昨天这里发生一起枪击案,关于此案详情今天晚上将有进一步介绍,据了解,枪击人名叫孙会邱,23岁,是维基尼亚技术大学英语专业学生。他出生于南韩,在华盛顿,维基尼亚北部长大。他的同学说他一直很不合群,老是一个人单独吃饭,有时甚至不答理别人的问候。今天下午维基尼亚技术大学举行了一个会谈,悼念昨天早上遭枪击死亡的32个人,布什总统和第一夫人从华盛顿赶到blackburgs参加维基尼亚技术大学的团体会谈。现在,我们将描述昨天枪杀案中的其中几个受害者。

       枪杀开始是在一个宿舍中,有两个学生死亡,赖安.克拉克和埃米丽.赖安今年22岁,主修心理学,生物学和英语三个专业,即将毕业,而且他还是维基尼亚行军乐队的一个成员.

       埃米丽,19岁,大一新生,在他的家乡维基尼亚.伍德是个广为人知的动物保护者.事实上,她学的专业是动物与诗意科学.在我的空间里她写道,除了历史,她最爱的就是她写的文字了.

       在教学楼有三十个人被枪击致死,其中,有新泽西州的学生,亨利.李,20岁,在维基尼亚长大,上学,瑞莎,18岁,大一新生,她和枪击者曾就读于同一所高中,但是显然她们都不认识彼此,米奈是她的老友了,看着她长大的,说,"我知道她很喜欢舞蹈和表演.我知道她在学法语,并且她法语很好.她想跳舞,她很有能力,嗓音甜美,舞蹈也很好"米奈说她比她父母,姐姐和哥哥都更优秀.

       凯特,19岁,是唯一幸存的小孩,她在纽约西镇长大. 凯特上中学时,玛丽在是本地一所学校的高级服务员.玛丽和她朋友凯说,"她很有音乐天赋,她会演奏小提琴,唱歌,而且是混合课程的会长,接着她又成为了一个歌唱组合的成员.她真的很有音乐天赋"

       在昨天的枪杀案中,又至少4个教授和导师死亡,其中有城市和环境工程学的教授,工程学和数学的教授,凯文,在维基尼亚研究整形外科,他和他的学生观察研究肌肉,反射性反应及机器人技术.詹米,教德语,几年前,他离开大学来到Karlano北部,混得不好,于是又和他妻子一同回到BLACKBURG.他妻子是维基尼亚技术大学外语系的教师.

马尔代夫

       白弄蝶(同) Abraximorpha davidii (Mabille)

       河伯锷弄蝶 Aeromachus inachus (Ménétriès)

       标锷弄蝶 Aeromachus stigmata (Moore,1878)

       黄斑弄蝶(小黄星弄蝶,小黄斑弄蝶) Ampittia dioscorides (Fabricius)

       黑斑伞弄蝶 Bibasis oedipodea (Swainson,[1820])

       放踵珂弄蝶(黯弄蝶,黑纹弄蝶) Caltoris cahira (Moore)

       斑星弄蝶(大流星弄蝶,大型黄纹弄蝶) Celaenorrhinus maculosus (C.& R. Felder)

       黑弄蝶(带弄蝶,玉带弄蝶) Daimio tethys Ménétriés

       黄斑蕉弄蝶(蕉弄蝶,香蕉弄蝶) Erionota torus Evans

       山珠弄蝶(深山珠弄蝶,深山弄蝶) Erynnis montanus (Bremer,1861)

       双子酣弄蝶 Halpe porus (Mabille,[1877])

       小弄蝶 Leptalina unicolor (Bremer & Grey,1853)

       双带弄蝶(白纹弄蝶) Lobocla bifasciata Bremer et Grey

       曲纹袖弄蝶(袖弄蝶,黑弄蝶) Notocrypta curvifascia (C. & R. Felder,1862)

       宽边赭弄蝶 Ochlodes ochracea (Bremer,1861)

       白斑赭弄蝶 Ochlodes subhyalina (Bremer et Grey)

       曲纹稻弄蝶 Parnara ganga Evans

       直纹稻弄蝶(稻弄蝶,单带弄蝶) Parnara guttata (Bremer & Grey,[1852])

       南亚古弄蝶(尖翅褐弄蝶) Pelopidas agna (Moore,1866)

       隐纹谷弄蝶(褐弄蝶) Pelopidas mathias (Fabricius)

       孔子黄室弄蝶(黄斑弄蝶,台湾黄斑弄蝶) Potanthus confucius (C.& R. Felder)

       曲纹黄室弄蝶 Potanthus flavus (Murray)

       宽纹黄室弄蝶 (淡黄斑弄蝶,淡色黄斑弄蝶) Potanthus pava (Fruhstorfer,1911)

       拟籼弄蝶(假禾弄蝶,小纹褐弄蝶) Pseudoborbo bevani (Moore,1878)

       黄襟弄蝶(八仙山褐弄蝶) Pseudocoladenia dan (Fabricius,1787)

       花弄蝶 Pyrgus maculates (Bremer et Grey)

       素弄蝶(黑星弄蝶) Suastus gremius (Fabricius,1798)

       星点弄蝶 Syzichtus tessellum (Hübner,1802)

       沾边裙弄蝶 Tagiades litigiosa M?schler,1878

       黄纹长标弄蝶(宽边橙斑弄蝶,竹红弄蝶) Telicota ohara (Pl?tz,1883)

       黑豹弄蝶 Thymelicus sylvaticus (Bremer)

       姜弄蝶(大白纹弄蝶) Udaspes folus (Cramer)

       未知种类 1

       未知种类 2

       返回

       凤蝶科

       Papilionidae

       (4/19) 瓦曙凤蝶 Atrophaneura varuna (White,1842)

       统帅青凤蝶(翠斑青凤蝶,绿斑凤蝶) Graphium agamemnon (Linnaeus)

       木兰青凤蝶(青斑凤蝶) Graphium doson (C.& R. Felder)

       青凤蝶(青带凤蝶) Graphium sarpedon (Linnaeus)

       燕凤蝶 Lamproptera curius (Fabricius,1787)

       红珠凤蝶 Pachliopta aritolochiae (Fabricius)

       碧凤蝶(翠凤蝶,乌鸦凤蝶) Papilio bianor Cramer,1777

       斑凤蝶(大斑凤蝶,黄边凤蝶) Papilio clytia Linnaeus, 1758

       达摩凤蝶(花凤蝶,无尾凤蝶) Papilio demoleus Linnaeus

       玉斑凤蝶(白纹凤蝶) Papilio helenus Linnaeus,1758

       金凤蝶 Papilio machaon Linnaeus

       美凤蝶(大凤蝶) Papilio memnon Linnaeus

       巴黎翠凤蝶(琉璃翠凤蝶,大琉璃纹凤蝶) Papilio paris Linnaeus

       玉带凤蝶(同) Papilio Polytes (Linnaeus)

       蓝凤蝶(黑凤蝶) Papilio protenor Cramer

       柑橘凤蝶 Papilio xuthus Linnaeus,1767

       绿凤蝶 Pathysa antiphates (Cramer,[1775])

       丝带凤蝶 Sericinus montela Gray, 1852

       裳凤蝶 Troides helena (Linnaeus)

       返回

       绢蝶科

       Parnassiidae 白绢蝶 Parnassius stubbendorfi Ménétriés

       返回

       粉蝶科

       Pieridae

       (8/17) 绢粉蝶 Aporia crataegi Linnaeus

       大翅绢粉蝶 Aporia largeteaui (Oberthür)

       酪色绢粉蝶(白绢粉蝶,深山粉蝶) Aporia potanini Alpheraky

       迁粉蝶(银纹淡黄蝶) Catopsilia pomona (Fabricius)

       梨花迁粉蝶(细波迁粉蝶,淡青粉蝶) Catopsilia pyranthe (Linnaeus,1758)

       斑缘豆粉蝶(纹黄蝶) Colias erate Esper

       斑粉蝶 Delias belladonna (Fabricius)

       优越斑粉蝶(白艳粉蝶,红纹粉蝶) Delias hyparete Linnaeus

       檗黄粉蝶(亮色黄蝶,台湾黄蝶) Eurema blanda (Boisduval)

       宽边黄粉蝶(黄蝶,荷氏黄蝶) Eurema hecabe (Linnaeus)

       尖钩粉蝶 Gonepteryx mahaguru Gistel,1857

       鹤顶粉蝶 Hebomoia glaucippe (Linnaeus)

       橙粉蝶(异粉蝶,雌白黄蝶) Ixias pyrene (Linnaeus)

       东方菜粉蝶 Pieris canidia (Linnaeus,1768)

       菜粉蝶(白粉蝶,纹白蝶) Pieris rapae Linnaeus

       云粉蝶 Pontia daplidice Linnaeus

       锯粉蝶(斑粉蝶) Prioneris thestylis hainanensis Fruhstorfer,1910

       返回

       环蝶科

       Amathusiidae 凤眼方环蝶(方环蝶) Discophora sondaica Boisduval

       串珠环蝶 Faunis eumeus (Drury, [1773])

       箭环蝶(环纹蝶)(海南亚种) Stichophthalma howqua bowringgi Joicey & Talbot

       返回

       蚬蝶科

       Riodinidae 蛇目褐蚬蝶 Abisara echerius (Stoll,1790)

       方裙褐蚬蝶 Abisara freda Bennett

       黑燕尾蚬蝶 Dodona deodata Hewitson

       银纹尾蚬蝶(台湾小灰蛱蝶) Dodona eugenes Bates, [1868]

       波蚬蝶 Zemeros flegyas (Cramer,[1780])

       返回

       灰蝶科

       Lycaenidae

       (19/48) 钮灰蝶 Acytolepis puspa (Horsfield,[1828])

       东北梳灰蝶 Ahlbergia frivaldszkyi (Lederer, 1855)

       婀灰蝶锡金亚种 Albulina orbitula sikkima (Bath)

       昂灰蝶海南亚种 Amblypodia anita hainana Crowley

       癞灰蝶(墨点灰蝶,长尾小灰蝶) Araragi enthea Janson

       海蓝娆灰蝶 Arhopala hellenore Doherty, 1889

       中华爱灰蝶 Aricia mandschurica Staudinge

       绿灰蝶(绿底小灰蝶) Artipe eryx (Linnaeus)

       琉璃灰蝶(琉璃小灰蝶) Celastrina argiolus Linnaeus

       大紫琉璃灰蝶(阿里山琉璃小灰蝶) Celastrina oreas (Leech,[1893])

       紫灰蝶 Chilades lajus lajus

       曲纹紫灰蝶 (苏铁绮灰蝶,东升苏铁小灰蝶) Chilades pandava (Horsfield)

       银灰蝶 Curetis acuta Moore

       棕灰蝶(奇波灰蝶,白尾小灰蝶) Euchrysops cnejus (Fabricius)

       蓝灰蝶(燕蓝灰蝶,雾社燕小灰蝶) Everes argiades Pallas

       爱来花灰蝶 Flos areste

       浓紫彩灰蝶(紫日灰蝶,红边黄小灰蝶) Heliophorus ila (de Niceville)

       斜斑彩灰蝶 Heliophorus phoenicoparyphus (Holland)

       斑灰蝶(钻灰蝶,三尾小灰蝶) Horaga onyx (Moore, [1858])

       陈氏何华灰蝶 Howarthia cheni Chou et Wang

       铁木莱异灰蝶 Iraota timoleon (Stoll, 1790)

       雅灰蝶(雅波灰蝶,琉璃波纹小灰蝶) Jamides bochus (Stoll,[1782])

       亮灰蝶(豆波灰蝶,波纹小灰蝶) Lampides boeticus (Linnaeus,1767)

       细灰蝶 Leptotes plinius (Fabricius,1793)

       红珠灰蝶 Lycaeides argyrognomon Bergstrasser

       橙灰蝶 Lycaena dispar Hauorth

       红灰蝶 Lycaena phlaeas Linnaeus

       黑灰蝶(黑小灰蝶) Niphanda fusca (Bremer & Grey,1853)

       酢酱灰蝶 Pseudozizeeria maha (Kollar,[1844])

       蓝燕灰蝶(堇彩燕灰蝶,淡紫小灰蝶) Rapala caerulea Bremer et Grey

       霓纱燕灰蝶 Rapala nissa (Koiiar)

       彩燕灰蝶 Rapala selira (Moore)

       燕灰蝶(垦丁小灰蝶) Rapala varuna (Horsfield,[1829])

       莱灰蝶 Remelana jangala Horsfield

       刺痣洒灰蝶 Satyrium spini (Denis et Schiffermüller)

       无尾洒灰蝶 Satyrium tengstoemi Erschoff

       洒灰蝶 Satyrium sp.

       珞灰蝶 Scolitantides orion Pallas

       诗灰蝶 Shirozua jonasi (Janson)

       生灰蝶(闪灰蝶,嘉义小灰蝶) Sinthusa chandrana (Moore)

       银线灰蝶(虎灰蝶,台湾双尾燕蝶) Spindasis lohita (Horsfield)

       豆粒银线灰蝶(三斑虎灰蝶,三星双尾燕蝶) Spindasis syama (Horsfield)

       蚜灰蝶(棋石小灰蝶) Taraka hamada (Druce)

       线灰蝶 Thecla betulae Linnaeus

       点玄灰蝶 (密点玄灰蝶,雾社黑燕小灰蝶) Tongeia filicaudis (Pryer,1877)

       玄灰蝶 Tongeia fischeri (Eversmann)

       吉灰蝶(苋蓝灰蝶,台湾小灰蝶) Zizeeria karsandra (Moore, 1865)

       毛眼灰蝶 Zizina otis (Fabricius)

       返回

       喙蝶科

       Libytheidae 朴喙蝶(喙蝶,长须蝶) Libythea celtis (Laicharting,[1782])

       返回

       珍蝶科

       Acraeidae 苎麻珍蝶(苎麻珍蝶,细蝶) Acraea issoria Hubner

       返回

       蛱蝶科

       Nymphalidae

       (25/56) 柳紫闪蛱蝶 Apatura ilia (Denis et Schiffermüller)

       细带闪蛱蝶(同) Apatura metis Freyer

       蜘蛱蝶 Araschnia levana (Linnaeus)

       斐豹蛱蝶(黑端豹斑蝶) Argyreus hyperbius (Linnaeus,1763)

       相思带蛱蝶 Athyma nefte Cramere

       玄珠带蛱蝶(白三线蝶) Athyma perius (Linnaeus, 1758)

       新月带蛱蝶(异纹带蛱蝶,单带蛱蝶) Athyma selenophora (Kollar)

       小豹蛱蝶 Brenthis daphne (Deniset et Schiffermüller)

       红锯蛱蝶 Cethosia biblis (Drury)

       白带锯蛱蝶 Cethosia cyane (Drury)

       曲纹银豹蛱蝶 Childrena zenobia (Leech)

       网丝蛱蝶(石墙蝶) Cyrestis thyodamas (Doyère,1840)

       电蛱蝶(流星蛱蝶) Dichorragia nesimachus (Boisduval)

       明窗蛱蝶 Dilipa fenestra (Leech,1891)

       矛翠蛱蝶 Euthalia aconthea (Cramer)

       尖翅翠蛱蝶 Euthalia phemius (Doubleday,[1848])

       灿福蛱蝶 Fabriciana adippe Denis et Schiffermüller

       黑脉蛱蝶(红斑脉蛱蝶,红星斑蛱蝶) Hestina assimilis (Linnaeus)

       拟斑脉蛱蝶 Hestina persimilis Westwood

       幻紫斑蛱蝶(幻蛱蝶,琉球紫蛱蝶) Hypolimnas bolina (Linnaeus)

       金斑蛱蝶(雌拟幻蛱蝶,雌红紫蛱蝶) Hypolimnas misippus (Linnaeus)

       孔雀蛱蝶 Inachis ic Linnaeus

       美眼蛱蝶(眼蛱蝶,孔雀蛱蝶) Junonia almana (Linnaeus)

       波纹眼蛱蝶(同) Junonia atlites (Linnaeus)

       蛇眼蛱蝶(鳞纹眼蛱蝶,眼纹拟蛱蝶) Junonia lemonias (Linnaeus)

       翠蓝眼蛱蝶(青眼蛱蝶,孔雀青蛱蝶) Junonia orithya (Linnaeus,1758)

       枯叶蛱蝶 Kallima inachus Doubleday

       琉璃蛱蝶 Kaniska canace (Linnaeus,1763)

       横眉线蛱蝶 Limenitis moltrechii Kardakoff

       斑网蛱蝶 Melitaea didymoides Eversmann

       网蛱蝶 Melitaea protomedia Ménétriés

       夜迷蛱蝶 Mimathyma nycteis Ménétriès

       白斑迷蛱蝶 Mimathyma schrenckii Ménétriès

       穆蛱蝶 Moduza procris (Cramer)

       中环蛱蝶(豆环蛱蝶,琉球三线蝶) Neptis hylas (Linnaeus)

       玛环蛱蝶 Neptis manasa Moore

       链环蛱蝶(黑星环蛱蝶,星三线蝶) Neptis pryeri Butler

       单环蛱蝶(二线蝶) Neptis rivularis (Scopoli)

       小环蛱蝶(小三线蝶) Neptis sappho (Pallas,1771)

       黄环蛱蝶 Neptis themis Leech

       朱蛱蝶 Nymphalis xanthomelas Denis et Schiffermüller

       黄钩蛱蝶 Polygonia c-aureum (Linnaeus, 1758)

       大二尾蛱蝶(双尾蛱蝶,双尾蝶) Polyura eudamippus (Doubleday,1843)

       二尾蛱蝶(小双尾蛱蝶,姬双尾蝶) Polyura narcaea (Hewitson)

       忘忧尾蛱蝶 Polyura nepenthes (Grose-Smith,1883)

       大紫蛱蝶(同) Sasakia charonda Hewitson

       素饰蛱蝶 Stibochiona nicea (Gray)

       花豹盛蛱蝶(姬黄三线蝶) Symbrenthia hypselis (Godart,[1824])

       散纹盛蛱蝶(黄三线蝶) Symbrenthia lilaea (Hewitson,1864)

       猫蛱蝶 Timelaea maculata Bremer et Gray

       彩蛱蝶 Vagrans egista(Cramer,[1780])

       未知种类 1

       未知种类 2

       未知种类 3

       未知种类 4

       未知种类 5

       返回

       斑蝶科

       Danaidae

       (0/10) 金斑蝶(桦斑蝶) Danaus chrysippus (Linnaeus,1758)

       虎斑蝶(黑脉桦斑蝶) Danaus genutia (Cramer)

       幻紫斑蝶(柯氏紫斑蝶) Euploea core (Cramer)

       蓝点紫斑蝶 Euploea midamus (Linnaeus)

       Euploea sp.

       拟旖斑蝶 Ideopsis similis (Linnaeus,1758)

       绢斑蝶(姬小纹青斑蝶) Parantica aglea (Stoll)

       大绢斑蝶 Parantica sita (Kollar,[1844])

       青斑蝶(淡纹青斑蝶) Tirumala limniace (Cramer,1775)

       啬青斑蝶(小纹青斑蝶) Tirumala septentrionis (Butler)

       返回

       眼蝶科

       Satyridae

       (12/29) 阿芬眼蝶 Aphantopus hyperantu (Linnaeus)

       翠袖锯眼蝶(蓝纹锯眼蝶,紫蛇目蝶) Elymnias hypermnestra (Linnaeus)

       云带红眼蝶 Erebia cyclopius Eversmann

       牧女珍眼蝶 Coenonympha amaryllis Cramer

       英雄珍眼蝶 Coenonympha hero (Linnaeus,1761)

       莎草眼蝶 Coenonympha oedippus Fabricius

       多眼蝶 Kirinia epimenidea (Staudinger)

       斗毛眼蝶 Lasiommata deidamia Eversmann

       曲纹黛眼蝶(雌褐荫蝶) Lethe chandica Moore

       白带黛眼蝶(白带蝶) Lethe confusa Aurivillius, [1898]

       波纹黛眼蝶(波纹玉带荫蝶) Lethe rohria Fabricius

       链纹黛眼蝶 Lethe syrcis (Hewsitson)

       玉带黛眼蝶(玉带黑荫蝶) Lethe verma (Kollar, [1844])

       白瞳舜眼蝶 Loxerebia saxicola (Oberthür)

       白眼蝶 Melanargia halimede (Ménétriès)

       暮眼蝶(树荫蝶) Melanitis leda (Linnaeus,1758)

       睇暮眼蝶(森林暮眼蝶.黑树荫蝶) Melanitis phedima (Cramer)

       蛇眼蝶 Minois dryas (Scopoli)

       小眉眼蝶(圆翅单环蝶) Mycalesis mineus (Linnaeus)

       僧袈眉眼蝶 Mycalesis sangaisca Butler

       平顶眉眼蝶 (切翅眉眼蝶,切翅单环蝶) Mycalesis zonata

       布莱荫眼蝶 (布氏荫眼蝶,台湾黄斑荫蝶) Neope bremeri (Felder)

       蒙链荫眼蝶 (褐翅荫眼蝶,永泽黄斑荫蝶) Neope muirheadi (Felder)

       蒙古酒眼蝶 Oeneis mongolica Oberthür

       奥眼蝶 Orsotriaena medus (Fabricius,1775)

       蟾眼蝶 Triphysa phryne (Pallas)

       黎桑矍眼蝶 Ypthima lisandra (Cramer)

       东亚矍眼蝶 (莫氏波眼蝶,莫氏波纹蛇目蝶) Ypthima motschulskyi Bremer et Gray

       桌矍眼蝶 Ypthima zodia Butler

       好像就这么多统计过的!!

中国下寒武统梅树村阶 ()

       北蒂拉杜马蒂ThiladhunmathiUthuru(Haa-Alif)

        南蒂拉杜马蒂ThiladhunmathiDhekunu(Haa-Dhaalu)

        北米拉杜马杜卢MiladhunmaduluUthuru(Shaviyani)

        南米拉杜马杜卢MiladhunmaduluDhekunu(Noonu)

        北马洛斯马杜卢MaalhosmaduluUthuru(Raa)

        南马洛斯马杜卢MaalhosmaduluDhekunu(Baa)

        法迪福卢Faadhippolhu(Lhaviyani)

        玛律MaléAtoll(Kaafu)

        北阿里AriAtollUthuru(Alif-Alif)

        南阿里AriAtollDheknu(Alif-Dhaal)

        费利杜FelidhéAtoll(Vaavu)

        穆拉库MulakuAtoll(Meemu)

        北尼兰杜NilandhéAtollUthuru(Faafu)

        南尼兰杜NilandhéAtollDhekunu(Dhaalu)

        科卢马杜卢Kolhumadulu(Thaa)

        哈杜马蒂Hadhdhunmathi(Laamu)

        北苏瓦迪瓦HuvadhuAtollUthuru(Gaafu-Alif)

        南苏瓦迪瓦HuvadhuAtollDhekunu(Gaafu-Dhaalu)

        福阿穆拉库FuaMulaku(?aviyani)

        阿杜Addu(Seenu)

       梅树村阶,是中国寒武系传统划分方案中下寒武统最底部的一个阶,位于我国震旦系灯影峡阶之上。阶名由钱逸于 1977 年命名,阶名源自同名岩石地层单位 “梅树村组”。

       经课题组 (项礼文等) 研究,取得以下重要进展: 选定了梅树村阶的层型剖面和界线层型剖面;积累了相当丰富的古生物资料,并建立了较系统的生物地层序列; 明确了梅树村阶底界的定义等。

       (一) 梅树村阶层型和界线层型剖面位置

       选定的梅树村阶层型剖面和界线层型剖面均位于云南省晋宁北西方向约7 km 的梅树村北西1. 5 km的小歪头至八道湾剖面,地理坐标为北纬 24°44'东经 102°24',(图81) 。

       (二) 梅树村阶层型剖面描述

       该剖面的岩石组合为一套磷块岩、白云岩、泥质粉砂岩和石英粉砂岩,普遍含磷,含化石丰富,总厚度为 84. 5 m (图82) 。分层岩性特征及含化石情况如下:

       上覆地层 下寒武统筇竹寺组玉案山段

       中国主要断代地层建阶研究项目(2001~2009) 进展与成果

       图81 梅树村阶层型剖面

       图82 梅树村阶候选层型剖面图

       中国主要断代地层建阶研究项目(2001~2009) 进展与成果

       中国主要断代地层建阶研究项目(2001~2009) 进展与成果

       (三) 梅树村阶内的生物地层序列

       梅树村阶 (期) 内富含各类小壳化石,根据其分布特征,自下而上可划分为了个组合带。(1) Anabarites - Protohertzina组合带: 分布于层型剖面第1 层至第6 层。此组合带的小壳化石壳体较微小,构造简单,属种单调。主要属种有软舌螺: Anabarites trisulcatus,Conotheca subcurvata,Tur-cutheca crasseocochlia,Spinulitheca billingsi,Ovalitheca sp. ; 似软舌螺: Hyolithellus tenuis,Pseudorthothe-ca tentaculoides, Pseudovalitheca crassa, Arthrochites emeishanensis, Spirellus columnaris, Torellella sp. ,Cambrotubulus sp. ; 管 壳 类: Protohertzina anabarica, P. unguliformis; 齿 形 壳 类: Salanacus cornuta,S. meishucunensis,Formichella cf. infundibuliformis; 锥 石 类: Conularia absidata, Eoconularia quadratus;单板类: Canopoconus prisrinis,Yunnanopleura biformis,Ocruranus finial,Emarginoconus cf. minus 腹足类:Archaeospira onata; 腕足类: Acidotocarena hordeolus,Atimycta sp. ; 球形类: Olivooides multisulcatus,Ar-charooides granulatus; 蠕 形 动 物: Parasabellidites wangjiawanensis; 遗迹 化 石: Cavaulichinus viatorus,Selaulichinus meishucunensis,Neonereites uniserialis,N. biserlalis,Phycodes pedum,Arenicolites sp. ,Aster-cites sp. ,Cochlichnus sp. ,Monmorphichnus sp. ; 微化石: Obruchevella parva,O. meishucunensis,Clano-phycus elegans,Eozyion grande,Tetraphycus yunnanensis; 疑源类: Trachysphaeridium simplex,Triangumor-pha tenera,Hupeisphaera radiate,Pseudodiacrodium verticole,Polyedryxium hebeiense,Montrematosparidium asperum; 叠层石: Parmites jinningensis 等。

       (2) Paragloborilus-Siphogonuchites组合带: 分布于层型剖面第7 层至第8 层,是小壳动物较为繁盛的时期。主要属种有软舌螺: Paragloborilus subglobosus,Turcutheca scapooides,Conotheca subcurvata,Porcauricula hypsillipis; 似软舌螺: Hyolithellus kijianicus,H. tenuis,Pseudorthotheca bistiata,Cambrotubu-lus decurvatus,Pseudovalitheca crassa,Spinulitheca billingsi; 管 壳 类: Siphogonuchites triangularis,Loma-sulcachites macrus,Lopochites latazonalis,L. quadrogonus,Drepanochites dilatatus,Halkieria sacciformis; 齿形壳类: Yunnanodus dolerus,Paracarinachites sinensis,Foelmichella sp. ; 单板类: Protoconus crestatus,Canopoconus cambrinus,C. calvatus,Igorella hamata,Ocruranus subpentaedrus,O. trulliformis,Purella cris-tata,P. squamalosa,Securicunus sinus, Aegides seperbes, Xinanfengella prima, Emaginoconus cf. minus,Ernogia accutatus; 腹足类: Larouchella korobkovi,Archaeospira ornate,A. multiribis; 喙壳类: Rostrocnussinensis; 双壳类: Eohalobia diandongensis; 腕足类: Psamathopalless amphidoz,Parapunctella xianfengen- sis,Aldanotreta sp. ; 球形类: Archaeooides granulatus,Ovaliooides multisulcatus; 遗迹 化 石: Didymauli-chnus meittensis,Rusophycus sp. ,Cruziana sp. ,Monomorphichnus sp. 等。

       (3) Sinoscachites-Lapworthella组合带: 分布于层型剖面第9 层至第12 层,是小壳动物的衰退期。主要属种有软舌螺: Neogloborilus spinatus,N. applanatus,Allatheca degeeri,Paraeonovitatus longevagin-natus,Burithes cf. erum; 似软舌螺: Coleoloides typicalis,Torellella sp. ,Hyolithellus tenuis; 管壳类: Si-nosachites flabelliformis,Halkieria sthensobasis; 骨状壳: Rhabdochites exespertus; 托莫特壳类: Tannuolinamultifora,Lapworthella rete; 开 腔 骨 类: Archiasterella pentaetina, A. ? territhallis, Allonia erromenosa, Cancelloria altaica; 多孔动物: Calcihexatina isophyllus; 单板类: Palaeocmaea sp. ; 遗迹化石: Plagiog-mus cf. arcuatus, Gordia macadria, G. molasica, Taphrhelminthopsis circularis, Skolithos sp. , Arenicolitessp. ,Diplocraterion sp. ; 疑 源 类: Trachysphaeridium rugosum, Pseudozonosphaera asperella, Asperatopso- phospharea bavlensis,Lophosphearidium torulosum,Montrematosphaeridium asperum 等。

       (四) 梅树村阶底界的定义

       目前,对于我国下寒武统梅树村阶有两种主张。一种主张广义的梅树村阶,其底界位于层型剖面渔户村组小歪头山段内小壳化石开始出现处,即三叶虫 Anabarites-Protohertzina组合带的底为梅树村阶的底 (A 点) ; 梅树村阶的上界,以三叶虫 Sinosachites-Lapworthella组合带的结束和三叶虫 Parabadiella带的出现作为与上覆筇竹寺阶的分界。另一种,主张狭义的梅树村阶,以三叶虫 Paragloborites-Siphogo-nuchites组合带的底作为狭义梅树村阶的底界 (B 点) ,其上界不变。本课题组 (项礼文等) 采用广义梅树村阶的涵义。

       (五) 梅树村阶的区域对比

       相当梅树村阶 (期) 的地层在国外 (英国、法国、瑞典、俄罗斯、蒙古、澳大利亚、北美等)均有广泛分布,这些地方,在最老三叶虫层位之下均发现有小壳化石和遗迹化石。与梅树村阶大致同期的岩石地层有英国的哈茨山组 (Hartshill Fm. ) ,美国的里德白云岩 (Reed dolomite) 上部和深泉组 (Deep Spring Fm. ) ,澳大利亚的乌拉丹纳组 (Uratanna Fm. ) 和帕拉契纳组 (Parachina Fm. ) ,加拿大麦肯山的后骨山脊组 (Backbone Range Fm. ) 俄罗斯的莫特阶 (Tommotian stage) ,摩洛哥的酒红色岩组 (Vinc-lees Fm. ) 和部分上灰岩组 (Upper limestone Fm. ) 。在国内,同期岩石地层有:贵州西部的灯影组戈仲伍段、冒龙井段、牛蹄塘组下段,陕西地区的灯影组、宽川铺组、郭家坝组下段,南秦岭地区的部分灯影组、鲁家坪组,湖北西部地区的灯影组天柱山段,新疆塔里木地台的肖尔布拉克组等。

       好了,今天关于“aria math”的话题就讲到这里了。希望大家能够通过我的介绍对“aria math”有更全面、深入的认识,并且能够在今后的实践中更好地运用所学知识。